
Binary Search Trees

See Section 19.1 of the text, p 687-696.

Consider the following Binary Search Tree

17

15 35

10 16

7 12

24 42

This tree has a nice property: for every node, all of
the nodes in its left subtree have values less than
the node's value; all of the nodes in its right
subtree have values that are larger.

39

17

15 35

10 16

7 12

24 42

39

There is an easy algorithm for searching a BST to
determine if it contains a node with value v: We
start at the root. At each step if v is greater than
the value of the node we move to the right child; if
v is less we move to the left. This ends either when
we find v or when we get to a null child.

17

15 35

10 16

7 12

24 42

39

Clicker Question: How can we print the nodes of a
Binary Search tree in increasing order?

A. Preorder traversal (node, left child, right child)
B. Inorder traversal (left child, node, right child)
C. Postorder traversal (left child, right child, node)
D. None of the above

17

15 35

10 16

7 12

24 42

39

To insert value v into a BST, we do a search and
insert the new node when we come to a null
child. For example if we want to add value 29 to
our BST we notice that it is greater than 17 (the
root), less than 35, and greater than 24. The
node with value 24 does not have a right child,
so we add 29 there:

17

15 35

10 16

7 12

24 42

3929

If we are lucky Binary Search Trees are balanced
(each node has 2 children) and each step of a search
eliminates half of the nodes. However, we might
not be so lucky. Consider the BST we would get if
we start with root value 0 and then add, in order,
the values 8, 12, 17 and 29:

0

8

12

17

29

In this case searching the BST degenerates into a linear
search.

We want to implement Binary Search Trees
with the following methods:

• find(v) finds the node with value v
• findMin() and findMax() return the

tree nodes with the smallest and
largest values

• insert(v) adds a node with value v
• removeMin() and removeMax()

remove the smallest or largest values
• remove(v) removes the node with

value v

Clicker Q: What is an algorithm for finding the
maximum value in a BST?
A. Start at the root and go right as far as you can;

when a node has no right child it is the largest.
B. Do an inorder traversal; the last value is the largest
C. Walk down the tree comparing the values of the

children; move in the direction of the larger child.
D. None of the above.

17

15 35

10 16

7 12

24 42

3929

The find method is easy to implement: just
follow the definition of a Binary Search Tree. If
you get to a null node, the value you seek isn't
there and you can return null.

There are two ways to handle the insert method.
For an iterative method you can loop down from
the root, following the BST algorithm. If you are
ready to move to the left and there is no left child,
put the new node there. If you are ready to move
to the right and there is no right child, put the
node there.

Alternatively you can recurse to do an insert. To
insert the item in the tree rooted at node t, look to
see if it should go in the left or right subtree. If the
left subtree, replace t.left by the result of inserting
the new item in t.left. In other words

t.left = insert(x, t.left);
The same applies to the right. When you get to a
null pointer, return a new node containing item x.

The only BST method that is tricky to implement is
remove.
Consider our example tree:

17

15 35

10 16

7 12

24 42

39

Suppose we want to remove the node with
value 35. That is tricky. So we cheat and
remove something that is easy.

Clickers: What is a correct BST that
might result from removing node 35?

17

15 35

10 16

7 12

24 42

39

17

15

10 16

7 12

24 42

39

17

15 42

10 16

7 12

24 39
0

17

15 39

10 16

7 12

24 42

A:

B: C:

A node with at most one child is easy to remove: we
just replace it by its child. For example, node 42
could be replaced by node 39 and this would still be
a BST:

17

15 35

10 16

7 12

24 42

39

39

In this tree we could replace node 10 with
12 and the result would still be a BST.

15

10 16

12

One way to get a node with at most one child is to
find the minimum or maximum value beneath any
node. We get to the minimum by following left
pointers until there is no left child; the minimum
node might have a right child but no left child.

So let's go back to the problem of removing an
interior node of a BST.

17

15 35

10 16

7 12

24 42

39

We want to remove node 35.

Since it has two children we go to its right
child; all of the values in this subtree are
greater than 35.

17

15 35

10 16

7 12

24 42

39

The minimum node in the subtree of the right child of 35 is a
node we know how to delete. The value of this node is 39.

Note that 39 is less than every other node in the right
subtree of 35, and greater than every node in the left
subtree. We can switch it with 35 and delete the node that
currently contains 39. The result is a BST that has all of the
original values except 35:

17

15 39

10 16

7 12

24 42

Isn't that clever!

To implement this we make a method that starts at a
given node and returns the smallest data value
below it, and another method that starts at a node
and removes the node with the smallest value below
it.

